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Differential and integral operators are used to solve the nonsymmetric system 
of equations characterizing the pure torsion of a body of revolution with vari- 
able shear moduli. The stress and displacement functions are expressed by 
convergent series containing two arbitrary analytic functions of a complex 

variable and the coefficients of a real argument defined in terms of the shear 
modulus. As an illustration, the problem of torsion of a hollow cylinder with 
mixed boundary conditions is considered. The torsion of isotropic rods has been 

examined in detail in fl], and for anisotropic bodies of revolution in [2. 33. 

1. Initial equrtlonl. The pure torsion of a body of revolution whose axis of 

cylindrical inhomogeneous anisotropy coincides with the geometric body axis is charac- 
terized in the cylindrical coordinates r z 8 by a linear system of partial differential 

equations of elliptic type p] 

acp - - P (r) -$ = 0, 
ar 

+f-+Q(r)$=O 

P (r) = r3 G, (r), 0 (4 = r3 G2 (4 (1.1) 

Here cp is the stress function, -+ is the displacement function, G,@ = G, (r), G,.a = 

Gz (r) are the shear moduli of the corresponding planes which we consider given (or 
found from experiment), bounded in a range of variation, and piecewise-continuous 
functions of the single variable r. Two stress components rzs = ri (1., z), rre = ‘$ 
(r, z) and the tangential displacement us = u (r, z) defined by the formulas 

1 acp z,=_- 
r2 ar 

= rG1 (r) $ , r2==--+$=rG2(r)-$-, u = 7-9 (1.2) 
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are not zero in torsion of such bodies. In contrast to [ 1. 21, let us seek the solution of 
the system (1.1) in the form of the operator 

q = Irn k$O % tr) wk 6% 4 = lse kg0 pk tr) wk (5) (1.3) 

; = .o + iz, p_S1/$+ (1.4) 

The real coefficients a,+, pk depend only on the single variable r, and the analytic 
functions wk (5) of the complex argument j = p $ iz will be selected so that the 

operator (1.3) would satisfy the system (1.1). Let us introduce appropriate derivatives 
of the functions (1.3) into the system (1.1). We hence arrive at the two equations 

In1 j ["k'wk -+ (a,( I/g + @,) w; ] = 0 
k=o 

Re ii [(?ekrwk + (@k fg+ak)Wk’] =o 
k=o 

(i-5) 

The known relationships Re iF(c) = - ImF (5 ) and Im iF (&) = ReF([) are 
hence taken into account. The system (1.5) can be satisfied by two means. 

2. Solution in the form of a differential operator. Thesystem 
(1.5) is satisfied identically for an arbitrary analytic function w. = W (5 ) if the 
conditions 

a,’ = PO’ = 0, ah.’ + ppk-1 + ak-1 I/ 
Gd 
r = 0 

a 

@k’ + ak-I + @k-l fg = 0, Wk=Wk-1 (k=l,2,...) 

are imposed on the coefficients a k, 16, and on the function Wk (5) . We hence find 

a, = a = con&, PO = p = con&, wh. = Z&k) 

ak=uko-S(P~k-l+~~ak_~)dr 

pk = $k” - s (+ + fg pk_l) dr (k =I, 2,. . .) 

(2.1) 

fake? pkc are arbitrary constants of integration). The solution (1.3) hence takes the 
form of a differential operator analogous to that presented in [4] 

Cp = ‘pl = Im ;gOuk (r) W(k) (c), $ = *I = Re i pk (r) ZU(“‘) (5) (2.2) 
k=O 

The complex conjugate argument < = p - iz, as well as arguments of the form 

51 = ic, ?l zE i5 can be considered in place of j in (2.2). In these cases the coef- 
ficients (2.1) are expressed by rather different formulas. 

3. Solutfon in the form of an integral operator. Thesystem(1.5) 
can also be satisfied in a different way for an arbitrary analytic function of the complex 
variable IL],, =L f (5). To do this we impose conditions of the form 
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a0 I/ g + Pb, = 0, QboJ/g+a,=O 

ak fz + Pb, + a’,-, = 0, Qbk fg + ak + Qbh-, = 0 
(3.1) 

fk’ (5) = fk-1 (5) (k = 1, 2, . . .) 
OnthefmctiOm ak= ak(r),bk = bk() r and wk = fk (5) (for convenience we 
have used the same notation). We hence arrive at the equations 

(3.2) 

ao+I/~bo=O 

a;_1 - v/pQ b;_, = 0 (k = 1, 2, . . .) (3.3) 

(I!?,,, are arbitrary constants of integration). Without limiting the generality, let us set 
c, = 0 (m = 1,2,... k). Then the solution (1.3) takes the form of an integral opera- 
tor analogous to the Bergman operator [5] [see also [4]) 

‘P=‘P2=Im 5 uk(r) lf(c)dik? 4~ = 4~~ = Re@ bk(r)if (5)dCk (3.4) 
k=o 

Here the provisional notation of a k -tuple integral 

k=o 

(3.5) 

is used. For k = 0 the integral in (3.5) is absent, and I, = f (c), where f (5) is an 
arbitrary analytic function of complex argument. In the general case the functions f (5) 
and w (5) are independent. The coefficients a,, 6k in (3.4) are found from (3.3). 
As a result of integration we obtain 

a0 = - Do (r6G1G2)%, b. = Do (r6G1G2)-“4 

ak = -Qb~-l-(PQ)“4[Dk-~~~dr] 

b, = (PO)-“’ 1 D, - + s ;@,;$ dr ] (k = 1, 2,. . .) (3.6) 

(Dk (k = 0,1,2,...) are arbitrary constants of integration). By analogy with [4, 51, it 
can be proved that if w (5) and f (5) are bounded in some domain, then the series in 

the solutions (2.2) and (3.4) converge absolutely and uniformly in the same domain. 
We do not examine this here. 

Solutions in the form (2.2) and (3.4) are mutually independent. A linear integro- 
differential combination of these solutions is also a solution of the system (1.1). The 

coefficients in (2.1) and (3.6) are expressed analytically or are tabulated depending on 
the parameters G, (r) and G, (r). By analogy with [4] it can be shown that the coef- 
ficients &, b i, D, are not essential. Then, without limiting the generality, it is suf- 

ficient to limit oneself to particular solutions, i.e. to set cc,’ = Pno = D, = 0 (n = 
1, 2,... ), which will also be considered later. 

For example, let us examine the case when the shear moduli are expressed by the 
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power-law functions 
G1 = g#, Gz = gar* (3.7) 

where g,, & are fixed constants, and p, 9 are any given numbers, Furthermore, setting 

a = 0, b = 1 in (2.1) for simplicity, we find 

rp+4 81 
a1 = - g1 - 

Pt4 ’ 
PI==---PI P+rA 

( 
_&+L +i,a= 

U -G- 
g*f2k-33_s)!l 

“k = (- it A (s _ If (k _ i)! (k + s - i)! rpi4pk-1 (3.3) 

p = ( - i)” (S -*2) (2k- 3 +s)Ir pk 

(k&,2,. 
(s - 3) (k - 2 + s)I kI 
. .; s ‘(p +4)/A # 1; 2; 3) 

For an isotropic body g, = g,, p = q = 0, s = 4, p = r. The coefficients akr bk can 
be calculated ana~go~ly from (3.6). Let us note that it follows from (3.8) that if there 

is a connection between p and Q expressed by one of the equalities 

(2n-i)A+p+4=0 (n=l,2,...) (3.9) 

then (2.2) become finite sums, and the question of convergence falls away. For example, 

if we set )I = 1 in (3.9), we then arrive at the equalities 

A= -@@44f, q= 3p+10 

In this case (1.4) and (2.2) have the form 
a 

Q, = Im elw’, 11, = Re (3~ + PM, 
p=--Fvr 

-(P+4) (3.10) 

It can be seen by direct substitution that the functions (3.10) satisfy the system (1.1). 

4. Towion of l hoftow ~nhomog8auou~ rod with mixed bound- 
ary condltionr on thu aide surfecei, Let us have a circular rod of bngth 
I with coaxial cylindrical surfaces of radii R, and Rz (Rz > R,). 

We consider the problem when stresses are given on one of the surfaces and displace- 
ments on the other in the form of functions of the coordinate z. The rod endfaces are 
stress-free, and the shear moduli are given in the form of piecewise-continuo~ functions 
of the radius. Taking account of (1.2). we have an internal mixed problem in a closed 

domain on one part of whose boundary Dirichlet conditions are specified for the displa- 
cement function, while we have the following Neumann conditions for the stress function 

on the other part: 
agi 
-F- z=o= I 0, * 

-z-r I 24 = 
0 

0 jr=Rz = Rlfl (z) 
acp 

-%- r=R, I 
= - Ra2f (2) = fi (4 

(4.1) 

Here fl (z>, f2 (4 are given piecewise-continuous functions of bounded variation in 
the interval (0, J). 

To solve the problem, let us use a linear integro-differential ccimbination of (2.2) 
and (3.4) 

(4.2) 
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u = r (% + &) = r Re kgo [Pk (r) w(“) (5) + h (r> 1 f (5) dCk ] 

AS the functions w (t;) and f (5) we Select the series 
m m 

w (9) = 2 A&-*~:) f (5) = 2 B,Le-Rw: (4.3) 

(An, B, are arbitrary constants, CO is a fixed constant). We calculate the appropriate 

derivatives and integrals of (4.3) inserting them into (4.2). Hence, after extracting real 

and imaginary parts, we obtain m 

q = 2 (Ana (r) A, + 6,” (r) B,,) sin nwz 
n=1 

c.2 

u = r 2 (AnP (r) A, + 6,b (r) B,) cos nwz 

Here the summation signs are permuted and the following notation is introduced* 

A,Q (r) = tynOP 2 (- I)” (?ZO)‘~h. (r) 
k=o 

6,” (r) = cnwp i (-1)” f!$- 
k=o 

(4.4) 

(4.5) 

CA,P and Sz are expressed by the same formulas (4.5) in which c&k and ck have just 

been replaced by p L and bl,, respectively). We set o = n/l in (4.4). Then taking 

account of the first formula in (1.2) we note that the first two conditions in (4.1) are 
satisfied automatically. The other two conditions in (4.1) are also satisfied if the coef- 

ficients A 71, B, in the range 0 < z < 1 are determined from the conditions 
00 

2 (A&4, + hlbB,) cos noz = fl (z) 
Tl==l 

i (no) (Asa/&, + 6,aB,) cos noz = fz (z) 
?k=l 

(ba, ho, As’=, 6,’ are constants which we obtain if Rr and Rs , respectively, are in- 
serted into (4.5) ) . We expand the functions fr (z) and fs (z) in cosine Fourier series 

in the interval (0, I) , and then we use the ordinary Fourier method to find the coeffi- 
cients A,, B, 

A, = & (nOC,,62= - d,6,“), B,,= + (d,AIP - nw~,A,~) 

A = no (AI@," - A2Q61b), n=l,2,... (4-G) 

The coefficients c, and d,, in (4.6) are found from the formulas 

1 1 

c,~ = -f- II (z) cos nwz dz, d,, = + 
s 

jz (z) cos n.wz dz (4.7) 

(n=O,1,2,...) o 
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Hence cs = d, = 0, which results in specific conditions imposed on the functions 

fi (2) and f* (s)* 
AS an illustration, let us consider the case when 

fl (2) = h, + haa=, fn = h, + 42 + bza 

(h,, hl k,, 4, k, are constants). Then we obtain from (4.7) 

C, = (- 1)” f$- , d, = & (I(- i)* - $1 kl + (- I)% Zkaf 

Fka 
&----~, ko=--1 

(4.6) 

(4.9) 

The relationships (4.9) impose constraints on the coefficients fr and k . 
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Within the scope of models of elastic-plastic media, without taking account 

of thermal effects, the rates of change in the stresses are determined uniquely 
by means of a given state of stress and strain rates [ 11. The constraint which 
should be imposed on a coupled thermoplasticity model so that the mentioned 

property would also exist in this case is considered herein. It is shown for the 
simplest coupled thermoplasticity mode&that when heat conduction is neglec- 
ted. there exists a domain of states of stress for which the system of plastic 
fIow equations is not evolutionary, and also a domain of states of stress for 
which shock formation occurs from smooth initial conditions (reversing of 
simple waves), These properties can also be interpreted as the properties of 
an ~coupled plasticity model with a nongradient plastic flow law. An exam- 


